6 research outputs found

    The (

    Get PDF
    The two variable (G'/G,1/G)-expansion method is employed to construct exact traveling wave solutions with parameters of two higher order nonlinear evolution equations, namely, the nonlinear Klein-Gordon equations and the nonlinear Pochhammer-Chree equations. When the parameters are replaced by special values, the well-known solitary wave solutions of these equations are rediscovered from the traveling waves. This method can be thought of as the generalization of well-known original (G'/G)-expansion method proposed by Wang et al. It is shown that the two variable (G'/G,1/G)-expansion method provides a more powerful mathematical tool for solving many other nonlinear PDEs in mathematical physics

    The Generalized Projective Riccati Equations Method for Solving Nonlinear Evolution Equations in Mathematical Physics

    No full text
    We apply the generalized projective Riccati equations method to find the exact traveling wave solutions of some nonlinear evolution equations with any-order nonlinear terms, namely, the nonlinear Pochhammer-Chree equation, the nonlinear Burgers equation and the generalized, nonlinear Zakharov-Kuznetsov equation. This method presents wider applicability for handling many other nonlinear evolution equations in mathematical physics

    Solitons and Other Exact Solutions for Two Nonlinear PDEs in Mathematical Physics Using the Generalized Projective Riccati Equations Method

    No full text
    We apply the generalized projective Riccati equations method with the aid of Maple software to construct many new soliton and periodic solutions with parameters for two higher-order nonlinear partial differential equations (PDEs), namely, the nonlinear Schrödinger (NLS) equation with fourth-order dispersion and dual power law nonlinearity and the nonlinear quantum Zakharov-Kuznetsov (QZK) equation. The obtained exact solutions include kink and antikink solitons, bell (bright) and antibell (dark) solitary wave solutions, and periodic solutions. The given nonlinear PDEs have been derived and can be reduced to nonlinear ordinary differential equations (ODEs) using a simple transformation. A comparison of our new results with the well-known results is made. Also, we drew some graphs of the exact solutions using Maple. The given method in this article is straightforward and concise, and it can also be applied to other nonlinear PDEs in mathematical physics
    corecore